Bio impresión 3D: importancia en la actualidad

Autores/as

  • Cesar Loo Gil Científico Investigador de BioFab Inc, y del Centro de Investigación & Producción Científica IDEOs, Lima - Perú

DOI:

https://doi.org/10.53673/jb.v1i1.1

Palabras clave:

impresión 3D, dispositivos médicos, biomateriales

Resumen

El trasplante de órganos y tejidos para ofrecer solución a heridas y deficiencias es un inconveniente que con urgencia se debería intentar, puesto que todavía hay problemas en el proceso, como la escasez de donantes y el peligro que provoca el rechazo inmunológico. La implementación de órganos y tejidos artificiales indica una mejor calidad de vida en los pacientes, no obstante, es necesario de una técnica de manufactura que posibilite el desarrollo de construcciones complicadas. La técnica de impresión 3D da solucionar las restricciones recientes en el desarrollo de órganos y tejidos, debido a que posibilita integrar células en los biomateriales para la regeneración de distintas construcciones biológicas. Esta revisión resume los estudios más importantes y el avance en el desarrollo de implantes, prótesis e ingeniería de tejidos por medio de impresión 3D, se introduce a los diversos biomateriales empleados en la manufactura aditiva, así como las múltiples técnicas de impresión usadas en aplicaciones biomédicas.

Citas

Abdullah AM, Tuan Rahim TNA, Mohamad D, Akil HM, Rajion ZA. Mechanical and physical properties of highly ZrO2 /β-TCP filled polyamide 12 prepared via fused deposition modelling (FDM) 3D printer for potential craniofacial reconstruction application. Mater Lett [Internet]. 2017;189:307-9. Available from: http://dx.doi. org/10.1016/j.matlet.2016.11.052

Almeida HA, Costa AF, Ramos C, Torres C, Minondo M, Bártolo PJ, et al. Additive Manufacturing Systems for Medical Applications: Case Studies. In: Additive Manufacturing - Developments in Training and Education [Internet]. Cham: Springer International Publishing; 2019 [cited 2019 Jul 5]. p. 187-209. Available from: http://link.springer.com/10.1007/978-3-319-76084-1_13

Alvial P, Bravo G, Bustos MP, Moreno G, Alfaro R, Cancino R, et al. Quantitative functional evaluation of a 3D-printed silicone-embedded prosthesis for partial hand amputation: A case report. J Hand Ther [Internet]. 2018;31(1):129-36. Available from: https://doi.org/10.1016/j.jht.2017.10.001

Araujo Borges R, Choudhury D, Zou M. 3D printed PCU/UHMWPE polymeric blend for artificial knee meniscus. Tribol Int [Internet]. 2018;122(January):1-7. Available from: https://doi.org/10.1016/j.triboint.2018.01.065

Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, et al. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today Bio [Internet]. 2019 Jan 1 [cited 2019 Jul 4];1:100008. Available from: https://www.sciencedirect.com/science/article/pii/S2590006419300146

Carrow JK, Kerativitayanan P, Jaiswal MK, Lokhande G, Gaharwar AK. Polymers for Bioprinting. Essentials 3D Biofabrication Transl [Internet]. 2015 Jan 1 [cited 2019 Jul 4];229-48. Available from: https://www.sciencedirect.com/science/article/pii/B978012800972700013X

Chen L, Deng C, Li J, Yao Q, Chang J, Wang L, et al. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials [Internet]. 2019 Mar [cited 2019 Jun 27];196:138-50. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0142961218302448

Chia HN, Wu BM. Recent advances in 3D printing of biomaterials. J Biol Eng [Internet]. 2015 Dec 1 [cited 2019 Jul 4];9(1):4. Available from: http://www.jbioleng.org/content/9/1/4

Coburn JC, Grant GT. FDA Regulatory Pathways and Technical Considerations for the 3D Printing of Medical Models and Devices. In: 3D Printing in Medicine [Internet]. Cham: Springer International Publishing; 2017 [cited 2019 Jul 5]. p. 97-111. Available from: http://link.springer.com/10.1007/978-3-319-61924-8_10

Colombo G, Rizzi C, Regazzoni D, Vitali A. 3D interactive environment for the design of medical devices. Int J Interact Des Manuf [Internet]. 2018 May 29 [cited 2019 Jul 4];12(2):699-715. Available from: http://link.springer.com/10.1007/s12008-018-0458-8

D’Urso P, Earwaker W, Barker T, Redmond M, Thomp- son R, Effeney D, Tomlinson F Custom cranioplasty us- ing stereolithography and acrylic. Br J Plast Surg. 2000; 53:200-204.

Dehghani S, Rasoulianboroujeni M, Ghasemi H. Biomaterials 3D-Printed membrane as an alternative to amniotic membrane for ocular surface / conjunctival defect reconstruction : An in vitro & in vivo study. 2018;174

Di Prima M, Coburn J, Hwang D, Kelly J, Khairuzzaman A, Ricles L. Additively manufactured medical products - the FDA perspective. 3D Print Med [Internet]. 2016 Dec 1 [cited 2019 Jul 5];2(1):1. Available from: https://threedmedprint.biomedcentral.com/articles/10.1186/s41205-016-0005-9 [ Links ]

Elgalal M, Kozakiewicz M, Olszycki M, Walkowiak B, Stefanczyk L Custom implant design and surgical pre-plan- ning using rapid prototyping and anatomical models for the repair of orbital floor fractures. Eur Radiol. 2009; 19(Suppl 1):S397.

Faber J, Berto P, Quaresma M. Rapid prototyping as a tool for diagnosis and treatment planning for maxillary canine impaction. Am J Orthod Dentofacial Orthop. 2006; 129:583-589.

Faletti R, Gatti M, Cosentino A, Bergamasco L, Cura Stura E, Garabello D, et al. 3D printing of the aortic annulus based on cardiovascular computed tomography: Preliminary experience in pre-procedural planning for aortic valve sizing. J Cardiovasc Comput Tomogr [Internet]. 2018;12(5):391-7. Available from: https://doi.org/10.1016/j.jcct.2018.05.016

Farooqi KM, Cooper C, Chelliah A, Saeed O, Chai PJ, Jambawalikar SR, et al. 3D Printing and Heart Failure: The Present and the Future. JACC Hear Fail [Internet]. 2019 Feb 1 [cited 2019 Jul 5];7(2):132-42. Available from: https://www.sciencedirect.com/science/article/pii/S2213177918307169

Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater [Internet]. 2019 Jun 1 [cited 2019 Jul 5];35(6):825-46. Available from: https://www.sciencedirect.com/science/article/pii/S0109564118304263

García-Valadez L, Espinoza-Gutiérrez A, Rivas-Montero J, Hernández-Méndez V, Santiago-García A, Banegas- Ruiz R, Cesar-Juárez A, Palmieri-Bouchan R. Impresión de modelos 3D para fracturas de radio distal: un estudio piloto en el Instituto Nacional de Rehabilitación. Rev Sanid Milit Mex. 2017;71:366-73.

Gibson I, Rosen DW, Stucker B. Medical Applications for Additive Manufacture. In: Additive Manufacturing Technologies [Internet]. Boston, MA: Springer US; 2010 [cited 2019 Jul 5]. p. 400-14. Available from: http://link.springer.com/10.1007/978-1-4419-1120-9_15

Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res [Internet]. 2018 Dec 6 [cited 2019 Jul 4];22(1):11. Available from: https://biomaterialsres.biomedcentral.com/articles/10.1186/s40824-018-0122-1

Ho L, Hsu S hui. Cell reprogramming by 3D bioprinting of human fibroblasts in polyurethane hydrogel for fabrication of neural-like constructs. Acta Biomater [Internet]. 2018;70:57-70. Available from: https://doi.org/10.1016/j.actbio.2018.01.044

Javaid M, Haleem A. Additive manufacturing applications in orthopaedics: A review. J Clin Orthop Trauma [Internet]. 2018 Jul 1 [cited 2019 Jul 5];9(3):202-6. Available from: https://www.sciencedirect.com/science/article/pii/S097656621830122X

Kim SH, Shin WB, Baek SW, Yoon JS. Semiautomated fabrication of a custom orbital prosthesis with 3-dimensional printing technology. J Prosthet Dent [Internet]. 2019;1-4. Available from: https://doi.org/10.1016/j.prosdent.2019.03.021

Lai Y, Li Y, Cao H, Long J, Wang X, Li L, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials. 2019;197(September 2018):207-19. [ Links ]

Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma [Internet]. 2018 Jul 1 [cited 2019 Jul 5];9(3):260-8. Available from: https://www.sciencedirect.com/science/article/pii/S0976566218303850

Lantada AD, Morgado PL, Stampfl J. Additive Manufacturing Technologies for Enhancing the Development Process of Biodevices. In: Handbook on Advanced Design and Manufacturing Technologies for Biomedical Devices [Internet]. Boston, MA: Springer US; 2013 [cited 2019 Jul 5]. p. 181-205. Available from: http://link.springer.com/10.1007/978-1-4614-6789-2_10

Lee S-J, Zhu W, Castro N, Zhang LG. Biomaterials and 3D Printing Techniques for Neural Tissue Regeneration. In: Neural Engineering [Internet]. Cham: Springer International Publishing; 2016 [cited 2019 Jul 5]. p. 1-24. Available from: http://link.springer./10.1007/978-3-319-31433-4_1

Liu J, Li L, Suo H, Yan M, Yin J, Fu J. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater Des [Internet]. 2019;171:107708. Available from: https://doi.org/10.1016/j.matdes.2019.107708

Liu J, Sun L, Xu W, Wang Q, Yu S, Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydr Polym [Internet]. 2019 Mar 1 [cited 2019 Jul 4];207:297- 316. Available from:https://www.sciencedirect.com/science/article/pii/S0144861718314103

Lozano R, Stevens L, Thompson BC, Gilmore KJ, Gorkin R, Stewart EM, et al. 3D printing of layered brain-like structures using peptide modified gellan gum substrates. Biomaterials [Internet]. 2015;67:264-73. Available from: http://dx.doi.org/10.1016/j.biomaterials.2015.07.022

Maroulakos M, Kamperos G, Tayebi L, Halazonetis D, Ren Y. Applications of 3D printing on craniofacial bone repair: A systematic review. J Dent [Internet]. 2019 Jan 1 [cited 2019 Jul 5];80:1-14. Available from:https://www.sciencedirect.com/science/article/pii/S0300571218306407

Martins JP, Ferreira MPA, Ezazi NZ, Hirvonen JT, Santos HA, Thrivikraman G, et al. 3D printing: prospects and challenges. Nanotechnologies Prev Regen Med [Internet]. 2018 Jan 1 [cited 2019 Jul 4];299-379. Available from: https://www.sciencedirect.com/science/article/pii/B9780323480635000046

Mavili M, Canter H, Saglam-Aydinatay B, Kamaci S, Kocadereli I. Use of three-dimensional medical modeling methods for precise planning of orthognathic surgery. J Craniofac Surg. 2007;18:740.

Mikolajczyk T, Malinowski T, Moldovan L, Fuwen H, Paczkowski T, Ciobanu I. CAD CAM System for Manufacturing Innovative Hybrid Design Using 3D Printing. Procedia Manuf [Internet]. 2019;32:22-8. Available from: https://doi.org/10.1016/j.promfg.2019.02.78

Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials [Internet]. 2019 Apr 1 [cited 2019 Jul 4];198:204-16. Available from:https://www.sciencedirect.com/science/article/pii/S014296121830560X

Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Mark- wald R. Biofabrication: A 21st century manufacturing paradigm. Biofabrication. 2009;1:022001.

Nagrath M, Sikora A, Graca J, Chinnici JL, Rahman SU, Reddy SG, et al. Functionalized prosthetic interfaces using 3D printing: Generating infection-neutralizing prosthesis in dentistry. Mater Today Commun [Internet]. 2018;15(January):114-9. Available from: https://doi.org/10.1016/j.mtcomm.2018.02.016

Park J, Kim JK, Park SA, Lee DW. Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent. Microelectron Eng [Internet]. 2019;206(October 2018):1-5. Available from: https://doi.org/10.1016/j.mee.2018.12.007

Park J, Kim JK, Park SA, Lee DW. Biodegradable polymer material based smart stent: Wireless pressure sensor and 3D printed stent. Microelectron Eng. 2019;206(October 2018):1-5

Park SA, Lee SJ, Lim KS, Bae IH, Lee JH, Kim WD, et al. In vivo evaluation and characterization of a bio-absorbable drug-coated stent fabricated using a 3D-printing system. Mater Lett [Internet]. 2015 Feb [cited 2019 Jun 25];141:355-8. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0167577X14021223

Poologasundarampillai G, Nommeots-Nomm A. Materials for 3D printing in medicine: Metals, polymers, ceramics, hydrogels. 3D Print Med [Internet]. 2017 Jan 1 [cited 2019 Jul 4];43-71. Available from:https://www.sciencedirect.com/science/article/pii/B9780081007174000028

PubMed-MeSH Major Topic. “Printing, Three-Dimension- al”. [Consultado: 25-agosto-2017]. Disponible en: https:// www.ncbi.nlm.nih.gov/mesh/?term=Printing%2C+Three- Dimensional

Seol YJ, Kang TY, Cho DW. Solid freeform fabrication technology applied to tissue engineering with various biomaterials. Soft Matter. 2012;8:1730-5.

Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomaterials [Internet]. 2018;171:57-71. Available from: https://doi.org/10.1016/j.biomaterials.2018.04.034

Sun Y, Zhang X, Li W, Di Y, Xing Q, Cao Q. 3D printing and biocompatibility study of a new biodegradable occluder for cardiac defect. J Cardiol [Internet]. 2019;74(2):182-8. Available from: https://doi.org/10.1016/j.jjcc.2019.02.002

Takagishi K, Umezu S. Development of the improving process for the 3D printed structure. Sci. Rep.-UK. 2017; 7:39852.

Tam CHA, Chan YC, Law Y, Cheng SWK. The Role of Three-Dimensional Printing in Contemporary Vascular and Endovascular Surgery: A Systematic Review. Ann Vasc Surg [Internet]. 2018 Nov 1 [cited 2019 Jul 5];53:243-54. Available from: https://www.sciencedirect.com/science/article/abs/pii/S089050961830503X

Vaishya R, Patralekh MK, Vaish A, Agarwal AK, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma [Internet]. 2018 Jul 1 [cited 2019 Jul 5];9(3):194-201. Available from: https://www.sciencedirect.com/science/article/pii/S0976566218302790

Xu X, Tao J, Wang S, Yang L, Zhang J, Zhang J, et al. 3D printing of nerve conduits with nanoparticle-encapsulated RGFP966. Appl Mater Today [Internet]. 2019;16:247-56. Available from: https://linkinghub.elsevier.com/retrieve/pii/S235294071930112X

Yang N, Chen H, Han H, Shen Y, Gu S, He Y, et al. 3D printing and coating to fabricate a hollow bullet-shaped implant with porous surface for controlled cytoxan release. Int J Pharm [Internet]. 2018;552(1-2):91-8. Available from: https://doi.org/10.1016/j.ijpharm.2018.09.042

Yang Y, Li H, Xu Y, Dong Y, Shan W, Shen J. Fabrication and evaluation of dental fillers using customized molds via 3D printing technology. Int J Pharm [Internet]. 2019;562(December 2018):66- 75. Available from: https://doi.org/10.1016/j.ijpharm.2019.03.024

Zhang XY, Yanagi Y, Sheng Z, Nagata K, Nakayama K, Taguchi T. Regeneration of diaphragm with bio-3D cellular patch. Biomaterials [Internet]. 2018;167:1-14. Available from: https://doi.org/10.1016/j.biomaterials.2018.03.012

Publicado

2022-10-08

Cómo citar

Cesar Loo Gil. (2022). Bio impresión 3D: importancia en la actualidad. Journal BioFab, 1(1), 1–35. https://doi.org/10.53673/jb.v1i1.1